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ABSTRACT The safety and effectiveness of systemic and
topical medical therapies for ocular disorders are limited due to
poor ocular drug uptake, nonspecificity to target tissues,
systemic side effects, and poor adherence to therapy. Intra-
vitreal injections can enhance ocular drug delivery, but the
need for frequent retreatment and potential injection-related
side effects limit the utility of this technique. Sustained-release
drug delivery systems have been developed to overcome
these limitations; such systems can achieve prolonged thera-
peutic drug concentrations in ocular target tissues while limiting
systemic exposure and side effects and improving patient
adherence to therapy. A critical factor in the development of
safe and effective drug delivery systems has been the
development of biocompatible polymers, which offer the
versatility to tailor drug release kinetics for specific drugs and
ocular diseases. Ocular implants include nonbiodegradable and
biodegradable designs, with the latter offering several advan-
tages. The polymers most commonly used in biodegradable
delivery systems are synthetic aliphatic polyesters of the poly-
a-hydroxy acid family including polylactic acid, polyglycolic acid,
and polylactic-co-glycolic acid. The characteristics of these
polymers for medical applications as well as the pharmacolog-
ical properties, safety, and clinical effectiveness of biodegradable
drug implants for the treatment of ocular diseases are reviewed
herein.
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INTRODUCTION

Topical drug therapy is the primary form of treatment for
front-of-the-eye diseases, such as ocular surface diseases (e.g.,
conjunctivitis, dry eye), for elevated intraocular pressure, and
for anterior uveitis (1-3). Anatomical and physiological
barriers in the eye, including the corneal epithelium and
conjunctival clearance mechanisms, afford protection
against the entry of xenobiotics. These barriers also greatly
impede the entry of drugs to the posterior segment, making
it difficult to achieve therapeutic drug concentrations (1-4).
Treatment of back-of-the-eye diseases such as diabetic
retinopathy, neovascular age-related macular degeneration,
and retinal venous occlusive disease is especially challenging
with topical therapy given the greater diffusional distance
(5). Although successful in rodent models (6,7), topical
therapy for retinal diseases has yet to be proven successful
in clinical trials. Systemically administered drugs can be
used for treating front- and back-of-the-eye diseases.
However, the accessibility of ocular tissues is greatly limited
by the blood-aqueous and blood-retinal barriers. As a
result, high systemic doses must be administered, which
increases drug exposure in non-ocular tissues and, conse-
quently, the risk of adverse systemic side effects (2,8).
Intravitreal drug injections have been used to deliver
high drug concentrations to target tissues in the eye.
However, the half-life of many intravitreally administered,
low molecular-weight drugs, such as corticosteroids, ranges
from 2 to 6 h (9), which results in transient efficacy and the
need for frequent re-injections to maintain therapeutic drug
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concentrations (10). Larger molecular-weight compounds,
such as vascular endothelial growth factor (VEGF) ant-
bodies and antigen-binding fragments, have longer half-
lives but still require monthly injections to maximize patient
visual acuity potential (11-14). Frequent intravitreal injec-
tions increase the risk of serious adverse events including
retinal detachment, endophthalmitis, and vitreous hemor-
rhage, as well as adverse manifestations in the anterior
segment, such as cataract formation and intraocular
pressure (IOP) elevation with corticosteroid use (15,16).
Although the incidence rates of these serious side effects
may be relatively low, they can be sight-threatening. Due to
the anatomic and physiologic barriers to both topical and
systemic drug therapy and the relatively short half-life of
compounds administered by intravitreal injection (Table I),
sustained drug delivery systems have evolved over the past
decade to become an important approach for treating a
variety of ocular discases.

Sustained-release intrascleral and intravitreal drug
implants and inserts have been developed for the treatment
of ocular diseases. These polymer-based drug delivery
systems are designed to achieve prolonged therapeutic drug
concentrations in ocular target tissues that are not readily
accessible by conventional means while limiting the side
effects from systemic drug exposure, frequent intraocular
injections, and high peak drug concentrations associated
with pulsed dosing, as well as improving patient compliance
(5,8,17,18).

Polymeric ocular drug delivery systems are classified as
two basic types: nonbiodegradable and biodegradable
(Table II) (5,10,19). The two most common nonbiodegrad-
able device types include reservoir-type devices, in which a
drug core is slowly released across a nonbiodegradable
semipermeable polymer or is released from a nonbiode-

Table I Limitations of Ocular Drug Delivery Methods

Method Limitations

Topical administration Limited uptake
Tear dilutionfwashout
Short acting

Poor adherence to therapy

Intravitreal injection Targeted delivery

Invasive/inconvenient/short lasting

Adverse events related to injection

Systemic administration Limited ocular penetration

Systemic toxicity

Nonbiodegradable implants Invasive surgery

Require removal

Adverse events related to implantation
or removal surgery
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gradable polymer with an opening of fixed area, and
implant-type devices, in which a nonbiodegradable free-
floating pellet is injected intravitreally or a nonbiodegrad-
able plug is anchored to the sclera. In a reservoir-type
system, release kinetics can achieve a near-zero-order rate
after establishing a steady-state concentration gradient
across the nonbiodegradable semipermeable membrane.
As long as solid drug remains within the core, the drug
release will be relatively constant. Biodegradable systems
are typically the matrix (monolithic) type, consisting of a
homogencous resin pellet made from drug and a biode-
gradable polymer; however, biodegradable core-shell and
microcapsule systems have also been studied (20,21). Most
of the clinically available ocular implants to date have been
of the nonbiodegradable type, typically consisting of a
combination of polyvinyl alcohol (PVA) and ethylene vinyl
acetate (EVA) (21).

BIODEGRADABLE OCULAR DRUG
DELIVERY SYSTEMS

Biodegradable ocular drug delivery devices are composed
of biocompatible polymers, which degrade into nontoxic
byproducts, or polymers that solubilize  vivo and can be
eliminated safely by the human body. Devices made from
these polymers do not elicit permanent chronic foreign-
body reactions (22) and do not require removal after the
drug supply has been exhausted (1,23), which represents a
distinct advantage over nonbiodegradable drug delivery
systems. Biodegradable devices are typically constructed
from synthetic aliphatic polyesters of the poly-a-hydroxy
acid family, which include polyglycolic acid (PGA), poly-
lactic acid (PLA), and the PGA/PLA copolymer, polylactic-
co-glycolic acid (PLGA).

PLGA is synthesized by means of random ring-opening
copolymerization of the cyclic dimers of glycolic acid and
lactic acid. Successive monomeric units of glycolic or lactic
acid are linked together in PLGA during polymerization by
ester linkages. The ratio of lactide to glycolide used for the
polymerization can be varied, and this will alter the bio-
degradation characteristics of the product (Fig. 1). The
possibility to tailor the polymer degradation time by
altering the ratio of the lactic acid and glycolic acid used
during synthesis has made PLGA attractive for use in the
production of a variety of biomedical devices since the
1970s. PLGA is relatively easy to construct into various
shapes, such as rods, screws, plates, and pins for orthopedic
and dental surgery; resorbable suture materials; vascular
grafts and stents; and surgical meshes and scaffolding for
tissue regeneration (22,24). Importantly, the rate of PLGA
biodegradation, molecular weight and degree of crystallin-
ity affects the drug release characteristics of drug delivery
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systems, thus giving polymer composition a significant role
in the customization of implant characteristics.

The rate of drug release from biodegradable devices
depends on the total surface area of the device, the
percentage of loaded drug, the water solubility of drug,
and the speed of polymer degradation (25). An advantage
of PLGA-based delivery systems is that the rate and
degree of drug release can be manipulated by altering the
polymer composition to influence the degradation charac-
teristics (24). The three main factors that determine the
degradation rate of PLGA copolymers are the lactide:
glycolide ratio (Fig. 1), lactide stereoisomeric composition
(i.e., the amount of L- vs. DL-lactide), and molecular weight
(22,24). The lactide:glycolide ratio and stereoisomeric
composition are most important for PLGA degradation,
as they determine polymer hydrophilicity and crystallinity.
PLGA with a I:1 ratio of lactic acid to glycolic acid
degrades faster than PLA or PGA (5), and the degradation
rate can be decreased by increasing the content of either
lactide or glycolide (Fig. 1) (21). Polymers with degradation
times ranging from weeks to years can be manufactured
simply by customizing the lactide:glycolide ratio and lactide
stereoisomeric composition (24). The versatility of PGA and
PLA has enabled the construction of delivery systems to
tailor drug release for treating a variety of front- and back-
of-the-eye diseases.

Drug release from PLA- and PLGA-based matrix drug
delivery systems generally follows pseudo first-order or
square-root kinetics. Release is influenced by many factors,
including polymer, drug load, implant morphology, and
porosity. In general, drug release occurs in three phases

(Fig. 2):

I: Burst release: Drug release from the implant surface
occurs, creating a short period of high drug release.

2: Diaffusion and chain scission: Diffusional drug release,
which is governed by the inherent solubility of the drug
in the surrounding media, occurs. Random chain
scission of polymers occurs by hydrolytic cleavage,
which increases the porosity and surface area for drug
diffusion

3: Biodegradation and mass loss: Drug release is associat-
ed with biodegradation of the polymer matrix, mass
loss initially occurring in the central core of the
implant, and a final burst in some delivery systems
(Fig. 2) (1,3,5,19). The rapid achievement of high drug
concentrations followed by a longer period of contin-
uous lower-dose release makes such delivery systems
ideally suited for acute-onset diseases that require a
loading dose of drug followed by tapering doses over
several months (20). More recent advancements in
PLGA-based drug delivery systems have allowed for
biphasic release characteristics with an initial high

(burst) rate of drug release followed by sustained zero-
order kinetic release; i.e. drug release rate from matrix
1s steady and independent of the drug concentration in
the surrounding milieu over longer periods (10).

PLA, PGA, and PLGA are cleaved predominantly by
nonenzymatic hydrolysis of their ester linkages throughout
the matrix, in the presence of water in the surrounding
tissues. This process, referred to as bulk erosion, is
distinguished from surface erosion of the drug/polymer
matrix surface (5) occurring with polymers such as
polyanhydrides (PAH) and polyorthoesters (POE). PLA,
PGA, and PLGA polymers are biocompatible because they
undergo hydrolysis in the body to produce the original
monomers, lactic acid and/or glycolic acid. Lactic and
glycolic acids are nontoxic and eliminated safely via the
Krebs cycle by conversion to carbon dioxide and water

(23,24).
Safety of Biodegradable Polymers

The safety and biocompatibility of PLGA polymers was
first demonstrated through their use in the production of
the biodegradable sutures Dexon® (PGA; Covidien AG,
Switzerland) and Vieryl® (L-PLGA; Johnson & Johnson
Corp., New Brunswick, NJ), which have been used
successfully in the clinical setting for more than 30 years
(24). The biocompatibility of PLA and PLGA polymers has
been further examined in both non-ocular and ocular
tissues of animals and humans. The findings indicate that
the polymers are generally well tolerated. In a long-term
follow-up study of patients who had received PLA- and
PLGA-containing resorbable-plate osteosyntheses for max-
illary and mandibular fracture/reconstruction, radiograph-
ic imaging and histopathological assessments showed
reliable biocompatibility and disintegration for both poly-
mers: 85:15 PLGA degraded within 12 months and 70:30
PLA within 24 months (26). Acceptable biocompatibility of
PLA and/or PLGA polymers has been demonstrated based
on in vitro studies in dura, spinal cord, Schwann cells, brain
tissue, and peripheral nerves (27).

The host response to polymeric implants is multifactorial
and is affected by the physical and chemical properties of
the polymer and by the physical properties of the implant
(volume, shape, and surface characteristics). The response
can be categorized to be tissue-dependent, organ-
dependent, and species-dependent (25). Implantation of
PLGA in bone or soft tissue of animals causes no
inflammatory response, or only a mild response that
diminishes with time, and is not associated with toxicity or
allergy. In addition, the biocompatibility of PLGA-
containing sutures and fracture fixation devices (rods, pins,
screws, and plates) has been confirmed in human clinical
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Fig. 2 Drug-release mechanisms
and biodegradation of matrix im-
plant. @ Schematic graph illustrat-
ing the cumulative release of drug
from a PLGA implant at each
phase of drug release and bio-
degradation. b Dry implant prior
to implantation shows porous
structure of PLGA. Magnified view
(right) shows drug molecules (red
spheres) interspersed in the pores
and skeleton of the PLGA poly-
mer. ¢ Burst phase of drug release
is the short phase occurring im-
mediately after implantation. Mag-
nified view (right) shows water
penetrating the pores of PLGA
(black curved arrows and squares)
on the surface and drug molecules
diffusing out of the implant on the
surface (red arrows and red
spheres). d Diffusion and random
chain scission phase of drug re-
lease. Implant swells slightly as
water molecules penetrate deeper
into the core of the implant. The
polymer is undergoing random
chain scission, where the long
PLGA chains are cleaved at ran-
dom locations. Magnified view
(right) shows water molecules
(black curved arrows and squares)
and drug molecules (red arrows
and spheres) entering and exiting
the implant from the core, re-
spectively. e Biodegradation and
mass loss phase is when the
polymer begins to structurally
break down from internal cavita-
tion. Magnified view (right) shows
that much of the drug molecules
have diffused out from the cavity. f
Continued biodegradation causes
structural changes that alter the
shape of the implant. Magnified
view (right) shows that water is
still passing through the polymer
and less drug is available for
release. g Implant fragments to-
wards the end of biodegradation.
Magnified view (right) shows that
water is still passing through the
smaller polymer skeleton and
even less drug is available for
release.
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Examples of Biodegradable Ocular Drug
Delivery Systems

Lacrisert® (Aton Pharma, Inc., Lawrenceville, NJ),
mtroduced in 1981, is a sterile, translucent, rod-shaped,
water-soluble, biodegradable ophthalmic insert made of
hydroxypropyl cellulose (HPC), a physiologically inert sub-
stance, for daily administration into the inferior cul-de-sac of
the eye. The sustained release of HPC (5 mg) stabilizes and
thickens the precorneal tear film and prolongs tear breakup
time. The implant is approved to relieve the signs and
symptoms of moderate to severe dry eye syndrome, including
keratitis sicca, and is indicated especially for patients who
remain symptomatic after therapy with artificial tears (32).
Once-daily treatment with Lacrisert was shown to be more
effective in relieving dry eye symptoms than 4-times-daily
treatments with topical artificial tears (32). The implant,
which can be self-administered up to twice daily using a
specially designed applicator, is generally well tolerated. Side
effects, which are typically mild and transient, include
blurred vision, ocular discomfort/irritation, matting/sticki-
ness of eyelashes, photophobia, hypersensitivity, eyelid
edema, and hyperemia. The results of patient surveys
regarding comfort and product preference favored Lacrisert
over artificial tears (32).

Surodex™ (Allergan, Inc., Irvine, CA) is a rod-shaped
biodegradable matrix implant (1.0x0.5 mm) consisting of
dexamethasone and PLGA with hydroxypropyl methylcel-
lulose (HPMC) which provides sustained drug release at a
constant rate (60 pg over 7-10 days) (20). The implant is
inserted in the anterior chamber following cataract surgery
to control postoperative inflammation (33-36). Surodex
does not require suture fixation and is well tolerated
(18,20). In cataract patients, Surodex was shown to reduce
anterior chamber cells and flare in the postoperative period
and to have an anti-inflammatory effect at least as good as
that of topical steroids (33—35).

A dexamethasone posterior-segment drug delivery sys-
tem (Ozurdex®, formerly Posurdex, Allergan Inc, Irvine,
CA) has recently been introduced into clinical practice.

Fig. 3 Ozurdex sustained-release drug delivery system. The dexameth-
asone drug pellet at a dose of 350 ug or 700 g is inserted using a 22-gauge
microinjector.

Day 3

Day 151

Day 181

Fig. 4 Photographic images showing biodegradation of PLGA dexameth-
asone 700-ug implant (Ozurdex) in a monkey eye over a 6-month period
(Allergan, data on file).

Ozurdex is a biodegradable implant consisting of 0.7 mg
dexamethasone within a solid, rod-shaped PLGA copoly-
mer (Novadur™, Allergan, Inc.) matrix (Figs. 3 and 4). The
implant is designed to release dexamethasone biphasically,
with peak doses for the initial 2 months, followed by lower
therapeutic doses for up to 6 months. A novel single-use
applicator is used to insert the drug pellet (6.5 mmX
0.45 mm) into the vitreous through a 22-gauge pars plana
injection (Fig. 3). The procedure is performed in-office
rather than in a surgical setting and does not require
sutures for wound closure. Ozurdex was approved by the
FDA in June 2009 for the treatment of macular edema
(ME) associated with retinal vein occlusion, and it is
currently being evaluated in clinical trials for the treatment
of macular edema secondary to diabetic retinopathy
(Clinicaltrials.gov ID# NCT00168337; NCT00168389)
and for the treatment of uveitis (NCT00333814). In a
phase 2 clinical trial, patients treated with the 700-pg
implant showed marked improvement in vision—up to a 3-
line increase in visual acuity as compared with a control
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group, with therapeutic effects persisting up to 180 days in
some eyes. The treatment was not associated with sterile
endophthalmitis or an increased incidence of retinal
detachment (37). A clinical safety evaluation of Ozurdex
following intravitreal insertion by sclerotomy in a 6-month
phase 2 study in patients with persistent ME showed a mild
increase in the incidence of adverse events in the treatment
groups relative to the observation groups on day 8, which
was expected as a result of the surgical procedure (i.e.,
hyperemia, pruritus, vitreous hemorrhage, and anterior
chamber cells and flare) (38). As of October 2009, more
than 2,500 patients have been enrolled in Ozurdex
studies.

A Novadur-based implant for the delivery of brimoni-
dine tartrate is in the early stages of development. It is
currently being evaluated in clinical trials of patients with
retinitis pigmentosa (phase 1 and 2; ID NCT00661479),
glaucomatous optic neuropathy (phase 2; NCT00693485),
age-related macular degeneration (phase 2; NCT00658619),
and rhegmatogenous macula-off retinal detachment (phase
2; ID NC'T00972374).

Verisome™ (Ramscor, Inc., Menlo Park, CA) is a zero-
order sustained-release, intraocular drug delivery technology
for the formulation of drugs as long-acting biodegradable
solids, gels, or liquids that can be administered intravitreally
via a standard 30-gauge injection. The technology is
nonpolymer-based and proprietary. It can be adapted for a
variety of drugs, including small molecules, peptides,
proteins, and monoclonal antibodies, to allow custom
tailoring of the duration of action (http://www.iconbio
science.com/ Technology-Overview.html). An investigation-
al triamcinolone acetonide (TA) formulation using the
Verisome system (IBI 20089) was shown in rabbits to
provide sustained delivery of TA at a mean daily dose of
1.1 pg/mkL for up to 1 year from a single injection (39). IBI
20089 was also recently evaluated for safety and efficacy in
a phase 1 trial in 10 patients with cystoid macular edema
associated with retinal vein occlusion (40). A formulation of
IBI 20089 that delivers 13.8 mg TA was found to sig-
nificantly reduce macular thickness at 120 days post-
treatment and was more effective than a 6.9-mg formulation.
The delivery system visibly reduced in size as the drug was
released, and it was well tolerated, with the exception of one
case of IOP elevation that required surgery.

Other biodegradable polymers, such as glycolide-co-
lactide-co-caprolactone copolymers (PGLC), polycaprolac-
tones (PCL), polyorthoesters (POE), and polyanhydrides
(PAH), have been explored for ocular drug delivery systems
(1,5,17,19), but these technologies are still in the early
stages of development, and none have yet been marketed
commercially. PGLC has been used in combination with
cyclosporine to treat experimental uveitis (41), in an
intracameral dexamethasone implant to prevent corneal
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graft rejection in an animal model (42), and with FK506 to
prolong corneal allograft survival (43). Polymers that
degrade by surface erosion, such as POE and PAH (e.g.
1,3-bis-carboxyphenoxypropane), are biocompatible and
may reduce drug burst effects when they are not required
clinically (1). POE, which is hydrophobic and degrades by
surface erosion, has been used to deliver 5-fluorouracil (44).
PAH, which also undergoes surface erosion, has been used
in implants to deliver 5-fluorouracil, 5-fluorouridine, mito-
mycin C, taxol, and ctoposide as adjuncts in glaucoma-
filtration surgery in animals (5,23).

The naturally occurring biopolymers chitosan and
gelatin have been used in ocular inserts to deliver
levofloxacin and gatifloxacin for the treatment of conjunc-
tivitis. These systems provide prolonged drug release with
zero-order kinetics (45).

In addition to their use in sustained-release implants and
inserts, biodegradable polymers can be used in a variety of
other ways to increase the residence time of drugs, slow
drug clearance, and enhance drug absorption. Biodegrad-
able polymers have been employed experimentally as vis-
cosity enhancers, as mucoadhesive agents, in drug-releasing
contact lenses, and in injectable formulations (e.g. hydrogels
and liposomes as well as microemulsions, microsuspensions,
microspheres, microcapsules and their nanoscale counter-
parts). These therapeutic strategies and examples of such
ocular drug delivery systems have been discussed in depth
in several recent reviews (1-3,17,19). Microsomes are
spherical liposomal structures, ranging in size from roughly
0.01 to 10 um that consist of vesicular lipid bilayers sepa-
rated by water or an aqueous buffer compartment (1,2,8).
Microsomes allow for the circumvention of cell membrane
barriers and protection of the delivered drug from
metabolic or immune attack, thereby reducing drug toxicity
and enhancing the therapeutic effect. Several studies have
examined the feasibility of using microspheres composed
from PLGA, PLA, and other biodegradable polymers as
biodegradable systems for the sustained ocular delivery of
therapeutic drugs (29,31,46) including progesterone (47),
adriamycin (30), and pegaptanib (48). Microspheres com-
posed of the biodegradable biopolymer chitosan have been
used to deliver acyclovir through the rabbit cornea (49) and
have been shown to enhance ocular delivery of ofloxacin
from erodible inserts constructed from polyethylene oxide
(50). Smaller-sized particulate drug delivery systems include
nanoparticles, which are polymeric colloidal particles
(ranging in size from 10 to 1,000 nm) consisting of
macromolecular materials in which the drug is dissolved,
entrapped, encapsulated, and/or to which the drug is
adsorbed or attached; nanospheres, which are solid spheres
containing drug bound in a matrix or adsorbed on the
surface of a colloidal carrier; and nanocapsules, which are
small capsules with a central cavity surrounded by a
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polymeric membrane (1,2,8). Biodegradable PLA nano-
particles (140 nm) administered intravitreally have been
shown to localize in the retinal pigment epithelium (51),
and coating nanoparticles with polyethylene glycol (PEG)
has been reported to enhance the therapeutic efficacy of
treatment for ocular diseases such as autoimmune uveor-
etinitis (52). Drug-impregnated contact lenses have been
widely investigated for the sustained release of ocular drugs
(53-55). Soft contact lenses are typically composed of
nonbiodegradable hydrogels of poly(2-hydroxyethylmetha-
crylate) (PHEMA) or hydroxyethylmethacrylate (HEMA)
copolymerized with other monomers such as methacrylic
acid, acetone acrylamide, and vinyl pyrrolidone. Typically,
the amount of drug that can be loaded into such systems is
low, and release is usually rapid and poorly controlled;
however, entrapping the drug in a biodegradable nano-
particle prior to incorporation into the contact lens can be
used to sustain the release (1).

NONBIODEGRADABLE OCULAR DRUG
DELIVERY SYSTEMS

In nonbiodegradable reservoir-type devices, PVA, a per-
meable polymer, is typically used as a structural element,
while the device’s drug-restricting membrane is composed
of EVA, a hydrophobic polymer that is relatively imper-
meable to hydrophilic drugs (1,3,5). Drug release from
reservoir-type devices occurs when water diffuses through
the outer EVA coating and partially dissolves the enclosed
drug, forming a saturated drug solution that is then
released into the surrounding tissue via diffusion (1,3).
Drug release occurs at a constant rate, and the duration of
release is limited primarily by the rate of drug dissolution
within the reservoir. The drug release rate can be slowed by
increasing the surface area or thickness of the drug-
restricting polymer, and drug delivery can be increased by
maximizing the surface area available for drug diffusion or
by using a more permeable membrane. Nonbiodegradable
reservoir-type devices are typically designed to release drug
over a span of months or years for the treatment of chronic
conditions that require long-term drug therapy.
Nonbiodegradable implants, although useful in some
clinical situations, have several distinct drawbacks (Table I).
Some designs require relatively large incisions for im-
plantation, may require sutures or some other form of
anchoring, and require re-implantation once the drug is
completely released to maintain efficacy and optional
removal of the prior implant. The implantation and
removal of nonbiodegradable implants can be associated
with serious side effects such as retinal detachment,
vitreous hemorrhage, and cataract formation (1,3,5,10,22,

23,56).

CONCLUSIONS

Biodegradable polymer-based drug delivery systems show
considerable promise for the treatment of ocular diseases.
Such systems offer a potential solution to many of the limi-
tations of conventional methods for the administration of
ophthalmic drugs, especially for treating sight-threatening
retinal diseases. Some polymers used in biodegradable drug
delivery systems offer well-documented biocompatibility
and an acceptable ocular safety profile, while other poly-
mers are investigational and are in varying stages of
development. The versatility of biodegradable polymers
allows for construction of delivery systems to tailor the drug
release for treating a variety of front- and back-of-the-eye
diseases. In addition, biodegradable drug delivery systems
can also be used to repurpose well-established drugs that
may be ineffective by conventional administration routes
and provide a sustained-release platform to be practical and
effective for treating eye diseases. Clinical studies are in
progress examining the efficacy and safety of such delivery
systems in a variety of ocular diseases.
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